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THERMAL BURST IN THE FLOW OF NON-LINEARLY VISCOUS MEDIA THROUGH A ROUND TUBE 
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and A. I. Mumladze 

UDC 532.135 

The problem of critical thermal conditions in a structurally viscous liquid flowing 
through an infinite tube is solved numerically with an allowance for the combined 
action of chemical and mechanical heat sources. 
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with the boundary conditions 

The thermal burst occurring during an exothermic chemical reaction in a medium at rest, 
which is characterized by a progressive temperature rise, was predicted and described in [i]. 
It has been shown in [2-4] that a phenomenon similar to a thermal burst can occur in the flow 
of a chemically inert, "exponential" liquid in an infinite tube or the flow of reactive New- 
ionian media whose viscosity is heavily dependent on the temperature. 

We shall investigate the thermal burst in the laminar, axlsymmetric flow of a general- 
ized, structurally viscous, incompressible, and reactive liquid with an allowance for the com- 
bined action of chemical and dissipative heat release. 

We assume that the thermophysical characteristics of the liquid are constant, a zero- 
order reaction is in progress, and a constant temperature is maintained at the tubewall. Then, 
the system of equations of motion and energy conservation with an allowance for dissipative 
heat release and heat release due to the chemical reaction has the following form: 

a~ �9 aP 
- -  q . . . .  const, r 6 (0, ~) ,  (1 )  
Or r Oz 

x( ) 1 OT ~ + �9 Ov --E 
r Or ] --~r +o~176 p - ~  = 0 ,  r E ( 0 ,  r ,)  ( 2 )  

for r = 0 x ---- 0, aT~Or= O, (3) 

for  r = r l  v = 0, T = T O = const. ( 4 )  

As a r h e o l o g i c a l  m o d e l ,  we s h a l l  u s e  t h e  K u t a t e l a d z e - K h a b a k h p a s h e v a  e q u a t i o n  [5.] f o r  a 
s t r u c t u r a l l y  v i s c o u s  l i q u i d ,  

~ ,  = exp ( - -  %),  (5 )  

where ~. = (~. -- ~)1(~| -- %) and ~. : O l~-- T0l/(~- %). 

Since viscosity is a more complex function of the shearing stress than fluidity, which 
is the inverse quantity [5]' the phenomenological theory of liquid flow with structural vis- 
cosity has been developed with respect to ~(T), which is, for T > To, defined in the one-dimen- 
sional case as 

d v l d r  = - -  ep(~ - -  %),  r 6 (ro, rO.  (6) 

We represent the temperature relationships of the rheological model parameters in the 
Arrhenius�9 form: 

% = A0 exp ( - -  B/RT), q~| = A| exp ( - -  BIRT), (7) 

O = e0 exp ( - -  B/RT), .% = ao exp (-- bo (T - -  To)). 
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Fig. i. Critical surface which separates the pre-burst region 
from the region of thermal burst (the solid curve pertains to a 
pseudoplastic liquid, while the dashed curve pertains to a di- 
lating liquid). 

Substituting (7) in Eq. (6) and reducing it to the dimensionless form, we obtain 

dw l 
= ---- {co --(Co -- 1) exp l - -  cl (x -- c2 exp (--  ~,~0 (Xo)))l} • 

dx 2 

( ~  
x |x--c~exp(--I~l~O(x.))|exp 1 -5[~0 , xE(xo, 1). (8) 

Treating the equation of energy conservation in a similar manner and eliminating the 
shear velocity, we find 

d20 1 O0 
-5 - -  - -  + g x  {Co-- (Co-- 1) exp [--  c i 0 r - -  cz exp (--  ~i~O (Xo)))]} • 

dx ~ x dx 

•  ( o~0 ) ( 0 ) 1 + ~0  + 8 exp = 0,~ x 6 (Xo, 1). 
�9 1 -5 ~0 (9 )  

The following notation of the dimensionless variables and parameters is used in (8) and 
(9). 

exp (B/RTo) E. (T - -  To), r r o 
~ - -  X - - - - -  - - ,  2 r  - -  , w -  br~A ~ v, O RT~ ri ri 

[I = RTo/E, ~z = B/E, Co = A~/Ao, ~l = boTo, 

e l =  2(A|  ' •  4XRTg exp 

c~ = ~ ,  ~ = exp 
brl ~RT~ . 

The p a r a m e t e r  x c h a r a c t e r i z e s  t h e  i n t e n s i t y  o f  t h e  h e a t  r e l e a s e  due to  v i s c o u s  f r i c t i o n ,  
is the Frank-Kamenetskii parameter, known from the thermal burst theory, which character- 

izes the intensity of heat release due to the chemical reaction, co, c,, c=, and 8, are the 
parameters accounting for the rheological characteristics of the structurally viscous medium, 
and ~ is the ratio of the activation energy of viscous friction to the activation energy of 
the chemical reaction. 

Since Eqs. (8) and (9) also describe generally the flow of a medium characterized by a 
yield point, the equations of motion and energy conservation break up to fit two regions: that 
of a quasisolid flow core x@(0,~), which is characterized by a constant velocity, and the shear 
flow region x6(~,l). 

For the quasisolid core region, which has no velocity gradient and, 
tion, the equation of energy conservation assumes the following form: 

#01 + . 1  __dOl-56exp ( O1 ) = 0 ,  xE(O, xo), (10) 
dx ~ x dx 1 + ~Oi 

where O, is the temperature of the flow core. 

thus, no viscous fric- 
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Fig. 2. Pre-burst profiles of the dimensionless temperatures 0 
and the velocities w for a pseudoplastic liquid i, a Newtonian 
liquid 2, and a dilating liquid 3. The curves i, 2, and 3 
correspond to the following values of the Frank-Kamenetskii pa- 
rameter 6: 0, i, and 2.46, respectively. 

For the shear flow region, the equations of motion and energy conservation are given by 
(8) and (9). 

The presence of a quasisolid core involves coupling conditions at its boundary, and, 
therefore, the boundary conditions for Eqs. (8), (9), and (i0) are the following: 

~r X=Xo dw/dx=O, 01=0, dOl/dx=dO/dx, (11) 

~r X= 1 w=O;  0 = 0 .  

Although Eq. (9) does not coincide entirely with the thermal burst equation [i] and can- 
not be reduced to the latter by the substitution of variables, the presence of an exponential 
heat source nevertheless suggests that Eq. (9) with the boundary conditions (ii) is qualita- 
tively similar to the thermal burst equation. Thus, with certain conditions imposed on the 
parameters • co, c~, c2, B~, and 6 of Eq. (9), high-density energy causing unsteady tempera- 
ture and flow velocity distributions can arise within the Volume of a moving structurally vis- 
cous medium. This is supported by a numerical investigation, the results of which are given 
below. 

It is known from thermal burst theory that the existence and the number of solutions de- 
pends on the parameters characterizing the process, which are R, co, c~, c2, B~, and 6 in our 
case. If the values of these parameters are lower than the critical values, Eq. (9) has two 
solutions, one of which is stable, realizable in physical experiments, and characterized by 
a low-temperature profile. If these parameters exceed certain critical values, Eq. (9) does 
not have a solution, and steady-state temperature and velocity distributions are impossible. 
Under such conditions, the heat released as a result of viscous friction and the chemical re- 
action is not removed through the tube wall, which produces a temperature rise in the flow, 
i.e., a phenomenon referred to as thermal burst. 

Thus, there exists a hypersurface in the space R e (where 6 is the number of the charac- 
teristic parameters ~, Co, c~, c2, ~, and 6) which separates the region of parameters with 
steady-state temperature and velocity distributions from the thermal burst region. 

It should also be mentioned that Eq. (i0), written for the flow core, coincides exactly 
with the thermal burst equation [i]. 
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We shall subsequently consider the flow of a structurally viscous liquid without a yield 
point, when the core region degenerates, ao = 0, and, thus, ca = 0, while the equations of mo- 
tion and energy conservation (8) and (9) assume the following form: 

d_._.ww= 1 _ !  - X[Co__(co - I)exp(--clx)lexp ( sO ) ,  x6(O, 1), (12) 
dx 2 1 -+- ~0 

d2___O_O + 1.~ d.__O0 ( s O ) q - S e x p (  ) = 0 ,  x6(O, 1), 
dx 2 x dx + ~x2 [co - -  (co - -  1) exp (--  clx)] exp 0 

1 + ~0 1 + ~0 (13) 

with the boundsry conditions 

for x=0 dO/dx=O, (14) 

for X = 1 w = O, 0 = O. (15) 

The equation of energy conservation (13) can be integrated for the boundary conditions 
(14) and (15) independently of the equation of motion (12). 

There is no known analytical solution of Eq. (13). Therefore the problem consists in 
solving numerically Eq. (13) and finding the dependence 6 = f(~• co, c~), i.e., the hyper- 
surface in R ~ which, as was mentioned above, separates the steady-state distributions of the 
temperature and velocity fields from the thermal burst region. 

The algorithm of numerical solution of the nonlinear equation (15) is based on the iter- 
ation principle [6], and a difference scheme with second-order approximation [7] is applied 
to problem (13). 

Calculations were performed for problem (12), (13) with boundary conditions (14),(15) 
for the flow of a reactive, structurally viscous medium, using ~ = 1.4, 8 = 0.1567, and co = 3 
for a pseudoplastie liquid and Co = 0.4 for a dilating liquid. 

The calculation results were used for plotting the critical surface 6 = f(~K, c,) (Fig. 
1), which separates the region of steady-state % and w distributions from the thermal burst 
region. 

For ~ = 0, i.e., in the absence of dissipative heat release, the surface degenerates into 
the point 6cr % 2.46. We shall subsequently omit the subscript cr, and the parameters 6, =~, 
and c~ and the dimensionless variables 0 and w will denote the critical values. For 6 = 0, 
i.e., in the absence of a chemical heat source, the surface degenerates into a curve in the 
(~• c,) plane. For the flow of a chemically reactive Newtonian liquid in the tube (i.e., 
when 0o = 0), we have c~ = 0, and the surface degenerates into the 6 = f(~• curve ina plane 
whose axes are 6 and a• 

The surface corresponding to a pseudoplastic liquid (solid curve) is located below the 
surface corresponding to the dilating liquid (dashed curve). This indicates that the thermal 
burst occurs earlier for the pseudoplastic liquid than for the Newtonian and dilating liquids. 

As an example, we performed calculations for the flow of a reactive, structurally vis- 
cous system with the following parameters: for the pseudoplastic liquid, B = 26.6 kJ/mole; 
E = 18.72 kJ/mole; Qo = 54.6 kJ/mole; ko = 0.68 kmole/(m3"sec); ~ = 0.457 W/(m'deg K); Ao = 
26.7.103 (Pa'sec)-Z; A~ = 80.1.10 s (Pa.sec)-1; for the dilating liquid, A~ = 10.68.103 (Pax 
sec) -I . 

For this case and a purely hydrodynamic thermal burst, the difference between the criti- 
cal parameter values ux % 8.88 for the pseudoplastic and u• ~ 9.51 for the dilating liquid on 
the one hand and the critical parameter value u• ~ 9.18 for the Newtonian liquid amounts to 
3.5%; it increases with the absolute value of the c, parameter. 

It should be borne in mind that the Co parameter also affects the critical value of u• 
for a structurally viscous liquid. With an increase in Co, the value of u• decreases. 

Figure 2 shows the results obtained in calculating 0 and the velocities w. 

Let us discuss the basic results of the numerical investigation. 

i. For the case of a purely hydrodynamic thermal burst (6 = 0; curves 1 in Fig. 2) in 
the absence of a chemical heat source, we obtained the following critical values of the pa- 
rameters and the variables: 
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a) for a pseudoplastic liquid, =• % 8.88; c, % 0.053; 8 % 1.286; w % 0.76, where % is 
the maximum pre-burst heating, i.e., the temperature at the tube axis immediatelypre- 
ceding the thermal burst, and w is the maximum~pre-burst velocity; 

b) for a Newtonian liquid (ci = 0), e• % 9.18; 0 % 1,273; w % 0.73; 
c) for a dilating liquid, ~% 9.51; c, % 0.055; 8 ~ 1.260; w ~ 0.70. 

2. For the case of thermal burst under the combined action of chemical and dissipative 
heat sources (8 = i; curves 2 in Fig. 2), the critical values of the parameters and the vari- 
ables are equal to: 

a) for a pseudoplastic liquid, e~ ~ 5.52; c, % 0.042; e ~ 1.610; w % 0.84; 
b) for a Newtonian liquid (ci = 0), ~ % 5.66; e % 1.605; w % 0.82; 
c) for a dilating liquid, ~ % 5.81; c, ~ 0.043; e ~ 1.588; w ~ 0.79. 

3. The conditions for a purely chemical thermal burst obtain for 6 ~ 2.46. Since there 
is no liquid motion (~ = 0), the difference between the liquids is eliminated, and curves 3 
in Fig. 2 are identical. This set of conditions was investigated in [I]. 

Our numerical analysis has shown that the maximum pre-burst temperature and velocity val- 
ues decrease as the liquid properties change in passing from a pseudoplastic to a dilating 
liquid. �9 

It is evident from Fig. 2 that the maximum pre-burst heating decreases (for ~ > i) as 
the heat source due to viscous friction becomes stronger. In the case of a hydrodynamic ther- 
mal burst, the temperature diagram is less steep at the tube axis in comparison with that for 
a chemical thermal burst, since the intensity of a chemical heat source is highest at the tube 
axis, while the intensity of a mechanical heat source is highest at the tube walls. All this 
is in qualitative agreement with the results obtained in [2]. 

NOTATION 

r and z, present coordinates; r,, tube radius; ro, coordinates of the boundary of the 
flow core; b =--~P/3z, pressure gradient; v and T, flow velocity and temperature, respectively; 
To, temperature of the tube wall; T, shearing stress; To, yield point; ~, fluidity of a non- 
Newtonian liquid; ~0 and ~| , fluidity for T + 0 and T§ respectively; 8, structural stabil- 
ity coefficient of the liquid; ko, 8o, ~o, Ao, A~, preexp0nential factors; B and E, activa- 
tion energy of viscous flow and of the chemical reaction, respectively; Qo, thermal reaction 
effect; ~, thermal conductivity coefficient; R, universal gas constant. 
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